第 1 章 高等仿真入门

在本章中,将学习:  高等仿真的功能。
 由高等仿真利用的文件。
 利用高等仿真的基本事情流程。
 创建 FEM 和仿真文件。
 用在仿真导航器中的文件。
 在高等仿真中有限元剖析事情的流程。

ug折叠门活动仿真_学会UGNX4高级仿真走遍世界都不怕 滑动门

1.1 综 述

UG NX4 高等仿真是一个综合性的有限元建模和结果可视化的产品,旨在知足设计工程师与剖析师的须要。
高等仿真包括一整套前处理和后处理工具,并支持广泛的产品性能

评估解法。
图 1-1 所示为持续杆剖析实例。

图 1-1 连杆剖析实例

高等仿真供应对许多业界标准解算器的无缝、透明支持,这样的解算器包括 NX Nastran、MSC Nastran、ANSYS 和 ABAQUS。
例如,如果构造仿真中创建网格或解法,则指定将要用于解算模型的解算器和要实行的剖析类型。
本软件利用该解算器的术语或\"大众语

言\"大众及剖析类型来展示所有网格划分、边界条件和解法选项。
其余,还可以求解模型并直

接在高等仿真中查当作果,不必首先导出解算器文件或导入结果。
高等仿真供应基本设计仿真中须要的所有功能,并支持高等剖析流程的浩瀚其他功能。
 高等仿真的数据构造很有特色,例如具有独立的仿真文件和 FEM 文件,这有利

于在分布式事情环境中开拓有限元(FE)模型。
这些数据构造还许可剖析师轻松

UG NX4 高等仿真培训教程 2

地共享 FE 数据去实行多种类型剖析。
 高等仿真供应天下级的网格划分功能。
本软件旨在利用经济的单元计数来产生高

质量网格。
构造仿真支持完全的单元类型(1D、2D 和 3D)。
其余,构造级仿真使剖析师能够掌握特定网格公差。
例如,这些公差掌握着软件如何对繁芜几何体

(例如圆角)划分网格。
 高等仿真包括许多几何体简化工具,使剖析师能够根据其剖析须要来量身定制

CAD 几何体。
例如,剖析师可以利用这些工具提高其网格的整体质量,方法是肃清有问题的几何体(例如眇小的边)。

 高等仿真中专门包含有新的 NX 传热解算器和 NX 流体解算器。
 NX 传热解算器是一种完备集成的有限差分解算器。
它许可热工程师预测承受

热载荷系统中的热流和温度。
 NX 流体解算器是一种打算流体动力学(CFD)解算器。
它许可剖析师实行稳

态、不可压缩的流剖析,并对系统中的流体运动预测流率和压力梯度,也可

以利用 NX 传热和 NX 流体一起实行耦合传热/流体剖析。

1.2 仿真文件构造

当向前通过高等仿真事情流时,将利用 4 个分离并关联的文件去存储信息。
要在高等仿真中高效地事情,须要理解哪些数据存储在哪个文件中,以及在创建那些数据时哪个文

件必须是激活的事情部件。
这 4 个文件平行于仿真过程,如图 1-2 所示。

图 1-2 仿真文件构造

正被剖析的原设计部件

一个有.prt 扩展名的部件文件。
例如,一个可以被命名为 plate.prt 的部件。
部件文件含有主模型部件或一装置,及一个未修正的部件几何体。
如果用一个由其他人设计的模型启动,可能没有修正它的权艰。
在剖析过程期间,通

常主模型部件文件是不被修正的。
设计部件文件的空想化复制

当一个空想化部件文件被建立时,默认有一.prt 扩展名,fem#_i 是对部件名的附加。
例如,如果原部件是 plate.prt,一个空想化部件被命名为 plate_fem1_i.prt。

第 1 章 高等仿真入门 3

一个空想化部件是原设计部件的一个干系复制,可以修正它。
空想化工具让用户利用空想化部件对主模型的设计特色做改变。
不修正主模型部件,

而按须要在空想化部件上实行几何体空想化。
例如,可以移去和抑制特色,如在剖析中被

忽略的小的几何细节。
对同一原设计部件文件的不同类型剖析可以利用多个空想化文件。

有限元模型(FEM)文件

当建立一 FEM 文件时默认有一个.fem 扩展名,_fem#是对部件名的附加。
例如,如果原部件是 plate.prt,一个 FEM 文件被命名为 plate_fem1.fem。

一个有限元模型文件含有网格(节点与单元)、物理特性和材料。
一旦建立了网格,可以利用简化工具移去可以影响网格总质量设计中的人为工具,如

苗条条面、小边缘和峡部条件。
简化工具许可相应一特定有限元剖析在充分捕捉设计意图

的细节级上网格化几何体。

几何体提取发生在存储于 FEM 中的多边形几何体上,而不是在空想化的或主模型的部 件中。

多个 FEM 文件可以引用同一空想化部件,可以对不同类型构建不同的 FEM 文件。
仿真文件

当建立一仿真文件时,默认一个仿真文件有一.sim 扩展名,_sim#是对部件名的附加。
例如,如果原部件是 plate.prt,一个仿真文件被命名为 plate_sim1.sim。

仿真文件含有所有仿真数据,如解答、解算设置、载荷、约束、单元干系的数据、物

理特性和压制,可以对文件建立许多关联到同一 FEM 的仿真文件。
当实行多个剖析类型时,4 个分离的文件供应灵巧性。
如果许可更新,4 个文件是关

连的。

1.3 高等仿真事情流程

在开始一个剖析前,该当对试图求解的问题有一彻底理解。
该当知道将利用哪个求解

器,正在实行什么类型的剖析和须要什么类型的办理方案。
下列简要摘录了在构造仿真中

通用的事情流程。
(1)在 NX 中,打开一部件文件。
(2)启动高等仿真运用。
为 FEM 和仿真文件规定默认求解器(设置环境,或措辞)。

把稳:也可以选择先建立 FEM 文件,然后再建立仿真文件。

(3)建立一办理方案。
选择求解器(如 NX Nastran)、剖析类型(如 Structural)和解决方案类型(如 Linear Statics)。

(4)如果须要,空想化部件几何体。
一旦使空想化部件激活,可以移去不须要的细节,

UG NX4 高等仿真培训教程 4

如孔或圆角,分隔几何体准备实体网格划分或建立中面。
(5)使 FEM 文件激活,网格划分几何体。
首先利用系统默认自动地网格化几何体。

在许多情形下系统默认供应一好的高质量的网格,可无须修正利用。
(6)检讨网格质量。
如果须要,可以用进一步空想化部件几何体细化网格,此外在

FEM 中可以利用简化工具,肃清当网格划分模型时由 CAD 几何体可能引起的不肯望结果的问题。

(7)运用一材料到网格。
(8)当对网格满意时,使仿真文件激活、浸染载荷与约束到模型。
(9)求解模型。
(10)在后处理中稽核结果。

1.4 仿真导航器

仿真导航器(Simulation Navigator)供应在一树状构造中,一个不雅观察和操纵一 CAE 剖析的不同文件和组元的图形方法。
每一个文件和组元被显示为在树中的一分离节点,如 图 1-3 所示。

在仿真导航器中供应了直接存取直通快捷菜单。
可以在仿真导航器中直接实行大多数

操作,代替利用图标或命令。
例如,建立一新的求解定义,可以把载荷和约束从一容器拖

到仿真导航器的另一个中。

图 1-3 仿真导航器

第 1 章 高等仿真入门 5

1.4.1 在仿真导航器中的节点

仿真导航器的顶部面板列出显示文件的内容。
如图 1-4 所示为在一个顶级仿真文件内的容器例子。
选中复选框可以掌握项目的显示。

图 1-4 仿真导航器中的各种节点

表 1-1 所示的是仿真导航器中各种节点的高等综述。

表 1-1 仿真导航器节点描述

图 标 节 点 名 节 点 描 述

仿真

含有所有仿真数据,如专门求解器、办理方案、 办理方案设置、仿真工具、载荷、约束和压制。
可以有多个仿真文件与一单个 FEM文件关联

FEM 含有所有网格数据、物理特性、材料数据和多边形几何体。
FEM文件总是干系到空想化。
可以关联多个 FEM 文件到一单个空想化部件

空想化部件 含有空想化部件,当建立一 FEM 时由软件自动建立

主模型部件 当主模型部件是事情部件时,在主模型部件节点上右击建立一新

的 FEM 或显示已有的空想化部件

多边形几何体 含有多边形几何体(多边形体、表面和边缘)。
一旦网格化有限

元模型,任何进一步几何体提取发生在多边形几何体上,而不是

在空想化或主模型部件上

UG NX4 高等仿真培训教程 6

续表

图 标 节 点 名 节 点 描 述

0D 网格 含有所有零维(0D)网格

1D 网格 含有所有一维(1D)网格

2D 网格 含有所有二维(2D)网格

3D 网格 含有所有三维(3D)网格

仿真工具容器

含有解算器和解决方案专有的工具,如自动调温器、表格或流动

表面

载荷容器 含有指定到当前仿真文件的载荷。
在一办理方案容器内,载荷容

器(Load Container)含有指定到给件子工况的载荷

约束容器 含有指定到当前仿真文件的约束。
在一办理方案容器内, 约束容器(Constraint Container)含有指定到办理方案的约束

办理方案 含有办理方案工具、载荷、约束和对办理方案的子工况

子工况步 含有一办理方案内每一个子工况办理方案的实体,如载荷、约束

和仿真工具

结果

含有从一求解得来的任一结果。
在后置处理器中, 可以打开结果节点,并利用在仿真导航器内的可见复选框去掌握各种结果组的

显示

1.4.2 仿真文件视图

仿真文件视图是一个分外浏览器窗口,存在于仿真导航器中。
该窗口:  显示所有已加载的部件,以及这些部件到主模型部件层次关系中的所有 FEM 和仿

真文件。
 许可轻松变动显示的部件,方法是双击要显示的部件。

 如果某一实体正在显示,图标则显示为彩色,且名称会高亮显示。
 如果某一实体不在显示,图标则变灰。

 许可在任何设计或空想化部件上创建新的 FEM 和仿真文件,而不必首先显示 部件。

仿真文件视图如图 1-5 所示。

第 1 章 高等仿真入门 7

图 1-5 仿真文件视图

1.5 练 习

在本练习中利用一三维实体网格,剖析一个连接杆部件,理解高等仿真事情流程,并

学习:  打开部件及建立 FEM 和仿真文件。
 在网格化前空想化几何体。
 网格化部件。
 为网格定义一材料。
 浸染载荷和约束到部件。
 求解模型。
 不雅观察剖析结果。
第 1 步 打开部件,启动高等仿真  在 NX 中,打开 rod.prt 部件,如图 1-6 所示。
 启动 Advanced Simulation 运用。
选择 Start→All Applications→Advanced Simulation。
 在资源条上,单击 Simulation Navigator 图标 。
 单击销(pin)图标 保持仿真导航器打开。
 在仿真导航器中,右击 rod.prt 并选择 New FEM and Simulation。

UG NX4 高等仿真培训教程 8

如图 1-7 所示,New FEM and Simulation 对话框列出 3 个已自动建立的新文件。
Default Language 下 NX NASTRAN 为求解器,Analysis Type 选择 Structural。

图 1-6 rod.prt 图 1-7 New FEM and Simulation 对话框

 单击 New FEM and Simulation 对话框中的 OK 按钮。
涌现 Create Solution 对话框,如图 1-8 所示,默认 Solver 是 NX NASTRAN。
 单击 Create Solution 对话框中的 OK 按钮。
Simulation Navigator 显示 Simulation 和 FEM 文件,如图 1-9 所示。

图 1-8 Create Solution 对话框 图 1-9 仿真导航器

第 2 步 空想化几何体 对此练习,某些设计特色可以从部件移去,由于它们对剖析是不主要的。

第 1 章 高等仿真入门 9

 在Simulation Navigator中,如果Simulation File View是被折叠,单击Simulation File

提示:也可以选择文件名,右击并选择 Make Displayed Part。

击 Idealize Geometry 图标

View 条打开它。
 双击 rod_fem1_i。

空想化的部件现在在仿真导航器中被激活。
 在 Advanced Simulation 工具栏中,单 。

,选择部件。

把稳: 10 mm。

孔从空想化部件被移去,如图 1-10 所示。

 随 Idealize 对话框打开 选中 Holes 复选框。

设置直径到 10,两个螺栓孔被亮显,由于每一个直径小于或即是

 单击 OK 按钮。

图 1-10 空想化部件

 单击 Save 图标 ,存储激活的文件。

t sh

第 3 步 划分部件网格 为了划分部件网格,首先须要使 FEM 文件激活。
 在 Simulation File View 中,双击 rod_fem1。
FEM 文件被激活并列在仿真导航器的顶部 。
 在 Advanced Simulation 工具栏上,单击 3DTe rahedral Me 图标 。

也可以从提示: 仿真导航器中右击 rod_fem1 并选择 New Mesh→3D Tetrahedral,建立

单元类型。

网格。

 随 3D Mesh 对话框打开,选择实体。
 从 Type 列表选择 CTETRA(10)单元。

把稳:CTETRA(10)和 CTETRA(4)是 NASTRAN

 在 Overall Element Size 框中加入 4.0。

UG NX4 高等仿真培训教程 10

 单击 OK 按钮建立网格,如图 1-11 所示。
如图 1-12 所示,3D 网格被列在 Simulation Navigator 中。

第 1 章 高等仿真入门 11

图 1-11 网格化部件 图 1-12 网格节点

 单击 Save 图标 ,存储 FEM 文件。
第 4 步 为网格定义一材料  在 Advanced Simulation 工具栏上,单击 Material Properties 图标 。

提示:也可以选择 Tools→ Material Properties。

 在 Materials 对话框中,单击 Library 图标 。
 在 Search Criteria 对话框中,单击 OK 按钮。
 在 Search Result 对话框中,选择名为 Steel 的材料,然后单击 OK 按钮。
材料特性被加载到 Materials 对话框中。
浸染材料到网格。
 使在 Materials 对话框中的 STEEL 被亮显。
 在 Simulation Navigator 中,单击(选择)3d_mesh(1)选择网格。
 在对话框中,单击 OK 按钮。
库材料被连接到网格。
利用 Simulation Navigator,检讨材料是否已被浸染到网格。
 在 Simulation Navigator 对话框中,右击 3d_mesh(1)和选择 Edit Attributes。
 在 Element Attributes 对话框中,检讨 STEEL 被列出为浸染到网格的材料。
 单击 Cancel 按钮。
 存储文件。
第 5 步 浸染一轴承载荷  在 Simulation File View 窗口中,双击 rod_sim1。
在仿真导航器中使 Simulation 文

件激活。

关断网格显示,因而方便曲面选择。
 在 Simulation Navigator 中不选中 3d_mesh(1)复选框,如图 1-13 所示。
 在 Advanced Simulation 工具栏上,单击 Load Type 图标 中的箭头,然后单击

Bearing 图标 。

UG NX4 高等仿真培训教程 12

图 1-13 关断 3D 网格显示

把稳:也可以利用 Simulation Navigator,在激活的办理方案(Solution 1)中,右击 Loads,并选择 New Load→ Bearing 去建立载荷。

轴承载荷哀求规定一柱形表面(或圆形边缘),和一规定最大载荷方向的矢量。
首先,选择几何体——轴承载荷将浸染的柱面。
 打开 Create Bearing 对话框,选择在部件右真个柱面,如图 1-14 所示。

图 1-14 选择载荷浸染表面

 在 Force 文本框中输入 1000。

把稳:区域角(Region Angle)设置到 180。
这意味着载荷将浸染到柱面超过 180°。

其次,选择要定义的最大载荷的矢量方向。
 单击 Inferred Vector 图标 中的箭头,并单击–YC Axis 图标 。
 单击 OK 按钮。
载荷建立并显示在图形中,如图 1-15 所示。
在载荷上显示的箭头是一 bit,利用 BC Edit Display 对话框改变边界条件的外面。
 在 Simulation Navigator 中右击 Solution(1)下的 Bearing(1)载荷,然后选择 Style。
 在 BC Edit Display 对话框中,微微移动 Scale 滑块向左减少箭头尺寸,然后单击

OK 按钮。

第 1 章 高等仿真入门 13

箭头尺寸改变,如图 1-16 所示。

图 1-15 建立并显示载荷 图 1-16 修正后的载荷显示

第 6 步 浸染第一约束 利用一销住约束,在杆的一端约束大的波折面。
该约束将仿真此面若何与另一部件上

的对应面匹配。
一个销住约束定义一旋转轴。
一旦选择了一柱面,建立一柱坐标系,R 和 Z 方向将被

固定,Theta(旋转)方向是自由的。
 在 Advanced Simulation 工具栏上,单击 Constraint Type 图标 中的箭头,然后单

击 Pinned Constraint 图标 。

把稳:也可以利用 Simulation Navigator,在激活的办理方案(Solution 1)中右击 Constraints 并选择 New Constraint→Pinned Constraint。

 打开 Create Pinned Constraint 对话框,选择在连接杆底部的大波折面,如图 1-17所示。

 单击 OK 按钮。
约束被浸染的显示。
由约束建立的圆柱坐标系也是可见的,如图 1-18 所示。

图 1-17 选择底部的大波折面 图 1-18 建立与显示销住约束

UG NX4 高等仿真培训教程 14

第 7 步 浸染第二约束 部件已被约束,但绕 Z 轴仍旧可自由旋转。
现在部件顶部加另一约束,防止一刚体运

动。
将利用用户定义的约束,在一个自由度中约束点。
 单击 Constraint Type 图标 中的箭头,然后单击 User Defined Constraint 图标 。
 在 Create User Defined Constraint 对话框中的 DOF1 框中,单击 Fixed 图标 。
 X 平移被固定,所有其他 DOF 保持自由。
 放大并选择点:在切槽的顶端处面相遇,如图 1-19 所示。
 单击 OK 按钮。
建立约束,如图 1-20 所示。

图 1-19 选择点 图 1-20 建立与显示固定约束

 存储文件。
第 8 步 求解模型 现在已定义了网格、材料、载荷和约束,准备求解模型。
作为过程的一部分,利用综

合检讨,考验模型是否准备完毕。
 在 Simulation Navigator 中,右击 Solution 1 并选择 Comprehensive Check,打开

Information 窗口。
 稽核检讨结果。
检讨列出的信息和警告。
 检讨推举选择 Iterative Solver 选项,它可以改进性能。
 检讨警告:对销住约束坐标系不同于节点下的坐标系。
当作用销住约束时,它利

用一柱坐标系压制在节点下的坐标系。
这不会引起任何问题,可以忽略警告。
 关闭 Information 窗口。
 在 Simulation Navigator 中,右击 Solution 1,并选择 Solution Attributes。
 在 Edit Solution 对话框中,选中 Iterative Solver(对 NX Nastran 2.0 和更高版本)

复选框。

 单击 OK 按钮。

第 1 章 高等仿真入门 15

 在 Simulation Navigator 中,右击 Solution 1,并选择 Solve。

提示:也可以在 Advanced Simulation 工具栏上单击 Solve 图标 ,显示 Solve 对话框。
把稳 Comprehensive Check 要选中。

 单击 OK 按钮。
显示 Information 窗口,再次综合检讨数据。
如果通过检讨,涌现 Analysis Job Monitor 对话框,它显示任务正在运行。
剖析在后台

运行,以是可以连续用 NX 事情,而有限元剖析正在被打算。
 当任务完成时,关闭 Information 窗口。
 在 Analysis Job Monitor 对话框上单击 Cancel 按钮。
现在解算完成,如图 1-21 所示,Results 节点在 Simulation Navigator 中可以见到。
第 9 步 不雅观察剖析结果 现在利用后置处理器不雅观察剖析结果。
在 Simulation Navigator 中,双击 Results。

提示:也可以单击 Advanced Simulation 工具栏上的 Results 图标 。

结果显示在后置处理器窗口中,如图 1-22 所示。

图 1-21 Results 节点 图 1-22 结果显示

显示 Post Control 工具栏,如图 1-23 所示。

图 1-23 Post Control 工具栏

提示:如果 Post Control 工具栏是不可见的,在 Application 工具区右击并选择 Post Control。

第 10 步 在仿真导航器中稽核结果 通过大略选择规定须要的类型,可以改变显示的结果类型。
把稳:默认选择位移类型。

UG NX4 高等仿真培训教程 16

许多结果类型有专门的子类型(数据组元)。
在图 1-24 中,Displacement 已经展开以显示不同数据元。

第 1 章 高等仿真入门 17

图 1-24 展开的位移节点

 在 Simulation Navigator 中,展开 SUBCASE — STATIC LOADS 1 Loads。
 展开 Displacement — Nodal。
 选中 Y 组元复选框。
显示更新以展示 Y 位移值,如图 1-25 所示。

图 1-25 Y 位移值

第 11 步 退出后置处理器 当完成不雅观察结果时,可以退出后置处理器。
 在 Post Control 工具栏上,单击 Finish Post Processing 图标 。

提示:也可以选择 Tools→ Results→ Finish Post Processing。

 关闭所有部件文件。

第1章 高等仿真入门

1.1 综 述

1.2 仿真文件构造

1.3 高等仿真事情流程

1.4 仿真导航器

1.4.1 在仿真导航器中的节点

1.4.2 仿真文件视图

1.5 练 习